Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.189
Filtrar
1.
Blood Cells Mol Dis ; 105: 102824, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262104

RESUMO

In preparation for hematopoietic stem cell mobilization and collection, current ex vivo gene therapy protocols for sickle cell disease require patients to undergo several months of chronic red cell transfusion. For health care equity, alternatives to red cell transfusion should be available. We examined whether treatment with GBT1118, the murine analog of voxelotor, could be a safe and feasible alternative to red cell transfusion. We found that 3 weeks of treatment with GBT1118 increased the percentage of bone marrow hematopoietic stem cells and upon plerixafor mobilization, the percentage of peripheral blood hematopoietic stem cells. Our data suggest that voxelotor should be further explored for its potential safety and utility as preparation for hematopoietic stem cell mobilization and collection.


Assuntos
Anemia Falciforme , Benzaldeídos , Transplante de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Niacinamida/análogos & derivados , Pirazinas , Humanos , Camundongos , Animais , Mobilização de Células-Tronco Hematopoéticas/métodos , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/uso terapêutico , Compostos Heterocíclicos/farmacologia , Pirazóis , Anemia Falciforme/genética , Anemia Falciforme/terapia , Anemia Falciforme/metabolismo , Terapia Genética/efeitos adversos , Fator Estimulador de Colônias de Granulócitos/farmacologia
2.
Exp Hematol ; 131: 104153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237718

RESUMO

The formation of new red blood cells (RBC) (erythropoiesis) has served as a paradigm for understanding cellular differentiation and developmental control of gene expression. The metabolic regulation of this complex, coordinated process remains poorly understood. Each step of erythropoiesis, including lineage specification of hematopoietic stem cells, proliferation, differentiation, and terminal maturation into highly specialized oxygen-carrying cells, has unique metabolic requirements. Developing erythrocytes in mammals are also characterized by unique metabolic events such as loss of mitochondria with switch to glycolysis, ejection of nucleus and organelles, high-level heme and hemoglobin synthesis, and antioxidant requirement to protect hemoglobin molecules. Genetic defects in metabolic enzymes, including pyruvate kinase and glucose-6-phosphate dehydrogenase, cause common erythrocyte disorders, whereas other inherited disorders such as sickle cell disease and ß-thalassemia display metabolic abnormalities associated with disease pathophysiology. Here we describe recent discoveries on the metabolic control of RBC formation and function, highlight emerging concepts in understanding the erythroid metabolome, and discuss potential therapeutic benefits of targeting metabolism for RBC disorders.


Assuntos
Anemia Falciforme , Eritropoese , Animais , Humanos , Eritropoese/fisiologia , Eritrócitos/metabolismo , Anemia Falciforme/metabolismo , Mitocôndrias/metabolismo , Hemoglobinas , Mamíferos
3.
Blood ; 143(6): 535-547, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37992231

RESUMO

ABSTRACT: In humans, ∼0.1% to 0.3% of circulating red blood cells (RBCs) are present as platelet-RBC (P-RBC) complexes, and it is 1% to 2% in mice. Excessive P-RBC complexes are found in diseases that compromise RBC health (eg, sickle cell disease and malaria) and contribute to pathogenesis. However, the physiological role of P-RBC complexes in healthy blood is unknown. As a result of damage accumulated over their lifetime, RBCs nearing senescence exhibit physiological and molecular changes akin to those in platelet-binding RBCs in sickle cell disease and malaria. Therefore, we hypothesized that RBCs nearing senescence are targets for platelet binding and P-RBC formation. Confirming this hypothesis, pulse-chase labeling studies in mice revealed an approximately tenfold increase in P-RBC complexes in the most chronologically aged RBC population compared with younger cells. When reintroduced into mice, these complexes were selectively cleared from the bloodstream (in preference to platelet-free RBC) through the reticuloendothelial system and erythrophagocytes in the spleen. As a corollary, patients without a spleen had higher levels of complexes in their bloodstream. When the platelet supply was artificially reduced in mice, fewer RBC complexes were formed, fewer erythrophagocytes were generated, and more senescent RBCs remained in circulation. Similar imbalances in complex levels and senescent RBC burden were observed in humans with immune thrombocytopenia (ITP). These findings indicate that platelets are important for binding and clearing senescent RBCs, and disruptions in platelet count or complex formation and clearance may negatively affect RBC homeostasis and may contribute to the known risk of thrombosis in ITP and after splenectomy.


Assuntos
Anemia Falciforme , Malária , Trombocitopenia , Humanos , Animais , Camundongos , Idoso , Plaquetas/metabolismo , Eritrócitos/metabolismo , Trombocitopenia/metabolismo , Anemia Falciforme/metabolismo
4.
Chem Biol Drug Des ; 103(1): e14371, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37798397

RESUMO

Sickle cell disease (SCD) is the most common genetic disorder, affecting millions of people worldwide. Aromatic aldehydes, which increase the oxygen affinity of human hemoglobin to prevent polymerization of sickle hemoglobin and inhibit red blood cell (RBC) sickling, have been the subject of keen interest for the development of effective treatment against SCD. However, the aldehyde functional group metabolic instability has severly hampered their development, except for voxelotor, which was approved in 2019 for SCD treatment. To improve the metabolic stability of aromatic aldehydes, we designed and synthesized novel molecules by incorporating Michael acceptor reactive centers into the previously clinically studied aromatic aldehyde, 5-hydroxymethylfurfural (5-HMF). Eight such derivatives, referred to as MMA compounds were synthesized and studied for their functional and biological activities. Unlike 5-HMF, which forms Schiff-base interaction with αVal1 nitrogen of hemoglobin, the MMA compounds covalently interacted with ßCys93, as evidenced by reverse-phase HPLC and disulfide exchange reaction, explaining their RBC sickling inhibitory activities, which at 2 mM and 5 mM, range from 0% to 21% and 9% to 64%, respectively. Additionally, the MMA compounds showed a second mechanism of sickling inhibition (12%-41% and 13%-62% at 2 mM and 5 mM, respectively) by directly destabilizing the sickle hemoglobin polymer. In vitro studies demonstrated sustained pharmacologic activities of the compounds compared to 5-HMF. These findings hold promise for advancing SCD therapeutics.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Humanos , Antidrepanocíticos/farmacologia , Antidrepanocíticos/uso terapêutico , Hemoglobinas/metabolismo , Hemoglobinas/uso terapêutico , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapêutico , Furanos , Aldeídos/uso terapêutico , Oxigênio/metabolismo
5.
Blood Cells Mol Dis ; 104: 102792, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633023

RESUMO

Sickle cell disease (SCD) is the most common ß-hemoglobinopathy caused by various mutations in the adult ß-globin gene resulting in sickle hemoglobin production, chronic hemolytic anemia, pain, and progressive organ damage. The best therapeutic strategies to manage the clinical symptoms of SCD is the induction of fetal hemoglobin (HbF) using chemical agents. At present, among the Food and Drug Administration-approved drugs to treat SCD, hydroxyurea is the only one proven to induce HbF protein synthesis, however, it is not effective in all people. Therefore, we evaluated the ability of the novel Bach1 inhibitor, HPP-D to induce HbF in KU812 cells and primary sickle erythroid progenitors. HPP-D increased HbF and decreased Bach1 protein levels in both cell types. Furthermore, chromatin immunoprecipitation assay showed reduced Bach1 and increased NRF2 binding to the γ-globin promoter antioxidant response elements. We also observed increased levels of the active histone marks H3K4Me1 and H3K4Me3 supporting an open chromatin configuration. In primary sickle erythroid progenitors, HPP-D increased γ-globin transcription and HbF positive cells and reduced sickled erythroid progenitors under hypoxia conditions. Collectively, our data demonstrate that HPP-D induces γ-globin gene transcription through Bach1 inhibition and enhanced NRF2 binding in the γ-globin promoter antioxidant response elements.


Assuntos
Anemia Falciforme , gama-Globinas , Humanos , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , Hemoglobina Falciforme/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/uso terapêutico , Ativação Transcricional/efeitos dos fármacos , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo
6.
Rapid Commun Mass Spectrom ; 38(2): e9671, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38124165

RESUMO

RATIONALE: Sickle cell disease, a debilitating genetic disorder affecting numerous newborns globally, has historically received limited attention in pharmaceutical research. However, recent years have witnessed a notable shift, with the Food and Drug Administration approving three innovative disease-modifying medications. Voxelotor, also known as GBT440, is a promising compound that effectively prevents sickling, providing a safe approach to alleviate chronic hemolytic anemia in sickle cell disease. It is a novel, orally bioavailable small molecule that inhibits hemoglobin S polymerization by enhancing oxygen affinity to hemoglobin. The investigation demonstrated that voxelotor led to an unintended elevation of hemoglobin levels in healthy individuals by increasing serum erythropoietin levels. METHODS: Voxelotor and its metabolites in an in vitro setting utilizing equine liver microsomes were discussed. Plausible structures of the identified metabolites were inferred through the application of liquid chromatography in conjunction with high-resolution mass spectrometry. RESULTS: Under the experimental conditions, a total of 31 metabolites were detected, including 16 phase I metabolites, two phase II metabolites, and 13 conjugates of phase I metabolites. The principal phase I metabolites were generated through processes such as hydroxylation, reduction, and dissociation. The presence of glucuronide and sulfate conjugates of the parent drug were also observed, along with hydroxylated, reduced, and dissociated analogs. CONCLUSIONS: The data acquired will accelerate the identification of voxelotor and related compounds, aiding in the detection of their illicit use in competitive sports. It is crucial to emphasize that the metabolites detailed in this manuscript were identified through in vitro experiments and their detection in an in vivo study may not be guaranteed.


Assuntos
Anemia Falciforme , Doping nos Esportes , Recém-Nascido , Humanos , Animais , Cavalos , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapêutico , Doping nos Esportes/prevenção & controle , Polimerização , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Benzaldeídos/farmacologia , Benzaldeídos/uso terapêutico , Hemoglobinas
7.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069257

RESUMO

Hemolytic disorders, like malaria and sickle cell disease (SCD), are responsible for significant mortality and morbidity rates globally, specifically in the Americas and Africa. In both malaria and SCD, red blood cell hemolysis leads to the release of a cytotoxic heme that triggers the expression of unique inflammatory profiles, which mediate the tissue damage and pathogenesis of both diseases. MicroRNAs (miRNAs), such as miR-451a and let-7i-5p, contribute to a reduction in the pro-inflammatory responses induced by circulating free hemes. MiR-451a targets both IL-6R (pro-inflammatory) and 14-3-3ζ (anti-inflammatory), and when this miRNA is present, IL-6R is reduced and 14-3-3ζ is increased. Let-7i-5p targets and reduces TLR4, which results in anti-inflammatory signaling. These gene targets regulate inflammation via NFκB regulation and increase anti-inflammatory signaling. Additionally, they indirectly regulate the expression of key heme scavengers, such as heme-oxygenase 1 (HO-1) (coded by the HMOX1 gene) and hemopexin, to decrease circulating cytotoxic heme concentration. MiRNAs can be transported within extracellular vesicles (EVs), such as exosomes, offering insights into the mechanisms of mitigating heme-induced inflammation. We tested the hypothesis that miR-451a- or let-7i-5p-loaded artificial EVs (liposomes) will reduce heme-induced inflammation in brain vascular endothelial cells (HBEC-5i, ATCC: CRL-3245) and macrophages (THP-1, ATCC: TIB-202) in vitro. We completed arginase and nitric oxide assays to determine anti- and pro-inflammatory macrophage presence, respectively. We also assessed the gene expression of IL-6R, TLR4, 14-3-3ζ, and NFκB by RT-qPCR for both cell lines. Our findings revealed that the exposure of HBEC-5i and THP-1 to liposomes loaded with miR-451a or let-7i-5p led to a reduced mRNA expression of IL-6R, TLR4, 14-3-3ζ, and NFκB when treated with a heme. It also resulted in the increased expression of HMOX1 and hemopexin. Finally, macrophages exhibited a tendency toward adopting an anti-inflammatory differentiation phenotype. These findings suggest that miRNA-loaded liposomes can modulate heme-induced inflammation and can be used to target specific cellular pathways, mediating inflammation common to hematological conditions, like malaria and SCD.


Assuntos
Anemia Falciforme , Malária , MicroRNAs , Humanos , MicroRNAs/metabolismo , Hemólise , Lipossomos/metabolismo , Heme/metabolismo , Células Endoteliais/metabolismo , Hemopexina/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas 14-3-3/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Inflamação/genética , Inflamação/metabolismo , Anti-Inflamatórios/metabolismo , Malária/metabolismo
8.
Presse Med ; 52(4): 104202, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944640

RESUMO

Sickle cell disease (SCD) is an hereditary disorder characterized by the production of an abnormal hemoglobin called hemoglobin S (HbS). HbS may polymerize in deoxygenated conditions, which leads to red blood cell (RBC) sickling. Sickled RBCs are more rigid and fragile, and prone to lysis. SCD patients exhibit various acute and/or chronic complications, which may affect several organs. The clinical presentation of SCD is highly variable from one patient to another and cannot be only explained by RBC sickling. Increased blood viscosity, caused by the presence of RBCs with abnormal deformability and aggregation, may increase vascular resistance and increase the risk of acute and chronic vascular complications. Chronic hemolysis results in decreased nitric oxide (NO) bioavailability which may compromise vasodilation and participate to the development of chronic vasculopathy. Furthermore, chronic hemolysis is responsible for increased inflammation and oxidative stress, which affect the vascular system and may promote the adhesion of circulating cells to endothelial cells. Extracellular vesicles and especially RBC microparticles (massively released in the context of SCD) are also at the origin of vascular damages and increased white blood cells adhesion to the endothelium, which may trigger vaso-occlusive crisis and other vascular-related complications. This review highlights the fact that SCD should not only be considered as a hematological disorder but also as a vascular disease.


Assuntos
Anemia Falciforme , Doenças Vasculares , Humanos , Hemólise , Células Endoteliais/metabolismo , Anemia Falciforme/complicações , Anemia Falciforme/metabolismo , Hemoglobina Falciforme/metabolismo , Doenças Vasculares/complicações
9.
PLoS One ; 18(10): e0292706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37812620

RESUMO

Sickle cell disease (SCD) is a genetic disorder that has been associated with priapism. The role of hydroxyurea, a common SCD therapy, in influencing the nitric oxide (NO)-cGMP pathway and its effect on priapism is unclear. To investigate the effect of hydroxyurea treatment on smooth muscle relaxation of corpus cavernosum induced by stimulation of the NO-cGMP pathway in SCD transgenic mice and endothelial NO synthase gene-deficient (eNOS-/-) mice, which are used as model of priapism associated with the low bioavailability of endothelial NO. Four-month-old wild-type (WT, C57BL/6), SCD transgenic, and eNOS-/- male mice were treated with hydroxyurea (100 mg/Kg/day) or its vehicle (saline) daily for three weeks via intraperitoneal injections. Concentration-response curves for acetylcholine (ACh), sodium nitroprusside (SNP), and electrical field stimulation (EFS) were generated using strips of mice corpus cavernosum. The SCD mice demonstrated an amplified CC relaxation response triggered by ACh, EFS, and SNP. The corpus cavernosum relaxation responses to SNP and EFS were found to be heightened in the eNOS-/- group. However, the hydroxyurea treatment did not alter these escalated relaxation responses to ACh, EFS, and SNP in the corpus cavernosum of the SCD group, nor the relaxation responses to EFS and SNP in the eNOS-/- group. In conclusion, hydroxyurea is not effective in treating priapism associated with SCD. It is likely that excess plasma hemoglobin and reactive oxygen species, which are reported in SCD, are reacting with NO before it binds to GCs in the smooth muscle of the corpus cavernosum, thus preventing the restoration of baseline NO/cGMP levels. Furthermore, the downregulation of eNOS in the penis may impair the pharmacological action of hydroxyurea at the endothelial level in SCD mice. This study emphasize the urgency for exploring alternative therapeutic avenues for priapism in SCD that are not hindered by high plasma hemoglobin and ROS levels.


Assuntos
Anemia Falciforme , Priapismo , Humanos , Camundongos , Masculino , Animais , Priapismo/etiologia , Priapismo/complicações , Óxido Nítrico/metabolismo , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Camundongos Endogâmicos C57BL , Pênis , Nitroprussiato/farmacologia , Nitroprussiato/metabolismo , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Camundongos Transgênicos , Relaxamento Muscular , Acetilcolina/metabolismo , Fenótipo , Hemoglobinas/metabolismo
10.
Blood ; 142(22): 1918-1927, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37774369

RESUMO

Vaso-occlusive pain episodes (VOE) cause severe pain in patients with sickle cell disease (SCD). Vaso-occlusive events promote ischemia/reperfusion pathobiology that activates complement. We hypothesized that complement activation is linked to VOE. We used cold to induce VOE in the Townes sickle homozygous for hemoglobin S (HbSS) mouse model and complement inhibitors to determine whether anaphylatoxin C5a mediates VOE. We used a dorsal skinfold chamber to measure microvascular stasis (vaso-occlusion) and von Frey filaments applied to the plantar surface of the hind paw to assess mechanical hyperalgesia in HbSS and control Townes mice homozygous for hemoglobin A (HbAA) mice after cold exposure at 10°C/50°F for 1 hour. Cold exposure induced more vaso-occlusion in nonhyperalgesic HbSS mice (33%) than in HbAA mice (11%) or HbSS mice left at room temperature (1%). Cold exposure also produced mechanical hyperalgesia as measured by paw withdrawal threshold in HbSS mice compared with that in HbAA mice or HbSS mice left at room temperature. Vaso-occlusion and hyperalgesia were associated with an increase in complement activation fragments Bb and C5a in plasma of HbSS mice after cold exposure. This was accompanied by an increase in proinflammatory NF-κB activation and VCAM-1 and ICAM-1 expression in the liver. Pretreatment of nonhyperalgesic HbSS mice before cold exposure with anti-C5 or anti-C5aR monoclonal antibodies (mAbs) decreased vaso-occlusion, mechanical hyperalgesia, complement activation, and liver inflammatory markers compared with pretreatment with control mAb. Anti-C5 or -C5aR mAb infusion also abrogated mechanical hyperalgesia in HbSS mice with ongoing hyperalgesia at baseline. These findings suggest that C5a promotes vaso-occlusion, pain, and inflammation during VOE and may play a role in chronic pain.


Assuntos
Anemia Falciforme , Traço Falciforme , Camundongos , Humanos , Animais , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Camundongos Transgênicos , Dor , Anemia Falciforme/complicações , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Traço Falciforme/complicações , Ativação do Complemento
11.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298481

RESUMO

Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the ß-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic ß- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with ß-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for ß-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.


Assuntos
Anemia Falciforme , Hemoglobinopatias , Talassemia beta , Humanos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Edição de Genes/métodos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Anemia Falciforme/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Talassemia beta/terapia , Talassemia beta/metabolismo
12.
Blood ; 142(4): 382-396, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37267508

RESUMO

Sickle cell disease (SCD) is a chronic hemolytic and systemic hypoxia condition with constant oxidative stress and significant metabolic alterations. However, little is known about the correlation between metabolic alterations and the pathophysiological symptoms. Here, we report that Nrf2, a master regulator of cellular antioxidant responses, regulates the production of the metabolite l-2-hydroxyglutarate (L2HG) to mediate epigenetic histone hypermethylation for gene expression involved in metabolic, oxidative, and ferroptotic stress responses in SCD. Mechanistically, Nrf2 was found to regulate the expression of L2HG dehydrogenase (L2hgdh) to mediate L2HG production under hypoxia. Gene expression profile analysis indicated that reactive oxygen species (ROS) and ferroptosis responses were the most significantly affected signaling pathways after Nrf2 ablation in SCD. Nrf2 silencing and L2HG supplementation sensitize human sickle erythroid cells to ROS and ferroptosis stress. The absence of Nrf2 and accumulation of L2HG significantly affect histone methylation for chromatin structure modification and reduce the assembly of transcription complexes on downstream target genes to regulate ROS and ferroptosis responses. Furthermore, pharmacological activation of Nrf2 was found to have protective effects against ROS and ferroptosis stress in SCD mice. Our data suggest a novel mechanism by which Nrf2 regulates L2HG levels to mediate SCD severity through ROS and ferroptosis stress responses, suggesting that targeting Nrf2 is a viable therapeutic strategy for ameliorating SCD symptoms.


Assuntos
Anemia Falciforme , Cromatina , Epigênese Genética , Ferroptose , Glutaratos , Fator 2 Relacionado a NF-E2 , Ferroptose/genética , Glutaratos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Cromatina/metabolismo , Metilação , Oxirredutases do Álcool/metabolismo , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Perfilação da Expressão Gênica
14.
Cells ; 12(8)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190030

RESUMO

BACKGROUND: Sickle cell disease (SCD) is a highly prevalent genetic disease caused by a point mutation in the HBB gene, which can lead to chronic hemolytic anemia and vaso-occlusive events. Patient-derived induced pluripotent stem cells (iPSCs) hold promise for the development of novel predictive methods for screening drugs with anti-sickling activity. In this study, we evaluated and compared the efficiency of 2D and 3D erythroid differentiation protocols using a healthy control and SCD-iPSCs. METHODS: iPSCs were subjected to hematopoietic progenitor cell (HSPC) induction, erythroid progenitor cell induction, and terminal erythroid maturation. Differentiation efficiency was confirmed by flow cytometry analysis, colony-forming unit (CFU) assay, morphological analyses, and qPCR-based gene expression analyses of HBB and HBG2. RESULTS: Both 2D and 3D differentiation protocols led to the induction of CD34+/CD43+ HSPCs. The 3D protocol showed good efficiency (>50%) and high productivity (45-fold) for HSPC induction and increased the frequency of BFU-E, CFU-E, CFU-GM, and CFU-GEMM colonies. We also produced CD71+/CD235a+ cells (>65%) with a 630-fold cell expansion relative to that at the beginning of the 3D protocol. After erythroid maturation, we observed 95% CD235a+/DRAQ5- enucleated cells, orthochromatic erythroblasts, and increased expression of fetal HBG2 compared to adult HBB. CONCLUSION: A robust 3D protocol for erythroid differentiation was identified using SCD-iPSCs and comparative analyses; however, the maturation step remains challenging and requires further development.


Assuntos
Anemia Falciforme , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Diferenciação Celular , Células-Tronco Hematopoéticas , Células Precursoras Eritroides/metabolismo , Anemia Falciforme/metabolismo
16.
Acc Chem Res ; 56(11): 1279-1286, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946781

RESUMO

Sickle cell disease (SCD) is an inherited blood disorder caused by a point mutation in hemoglobin (Hb), the protein in the red blood cell (RBC) responsible for the transport of oxygen (O2) throughout the body. The mutation leads to the expression of sickle cell hemoglobin (HbS). Both Hb and HbS exist in equilibrium between oxygenated and deoxygenated forms; however, deoxygenated HbS can polymerize to form long fibers which distort the shape of RBCs into the characteristic sickled shape. The misshapen RBCs can obstruct blood vessels and capillaries, resulting in a vaso-occlusive crisis. Vaso-occulsion deprives tissues and organs of O2 and can cause intense pain which often results in hospitalization. Chronic organ damage is a major cause of reduced life expectancy for SCD patients.Allosteric effectors are molecules which regulate protein function. HbS allosteric effectors can be used to decrease polymerization by stabilizing the oxygenated form of HbS, which leads to an increase in O2 uptake and a decrease in the sickling of RBCs. Allosteric effectors that have been evaluated for the treatment of SCD include vanillin, 5-hydroxymethyl furfural (5-HMF), and voxelotor, which was approved by the U.S. Food and Drug Administration (FDA) for the treatment of SCD in 2019. 5-HMF did not progress to phase III clinical trials since it suffered from rapid metabolic degradation. However, several derivatives of 5-HMF and vanillin have been synthesized and evaluated as potential candidates for SCD treatment. Derivatives of these compounds have shown promise, but their shortcomings, such as high levels of oxidative metabolism, have prevented them from progressing into marketable drugs. Our efforts have produced multiple 5-HMF derivatives which have been evaluated for their potential to treat SCD. Each derivative was evaluated for its ability to increase O2 affinity (i.e., P50, the partial pressure at which hemoglobin is 50% saturated with O2). The synthesized aryl ether derivatives were evaluated, and results suggest that compounds with multiple aromatic aldehydes may have enhanced biological properties. One such derivative, compound 5, which features two furan aldehyde rings, exhibited increased O2 affinity (P50 = 8.82 ± 1.87 mmHg) over that of unmodified Hb (P50 = 13.67 ± 0.22 mmHg). Future studies include obtaining crystal structures of the 5-HMF derivatives complexed with HbS to confirm the protein-allosteric effector interactions.


Assuntos
Anemia Falciforme , Humanos , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Hemoglobinas/uso terapêutico , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapêutico , Eritrócitos , Oxigênio/metabolismo , Aldeídos
17.
Blood ; 141(25): 3091-3108, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36952641

RESUMO

Sickle cell disease (SCD) is hallmarked by an underlying chronic inflammatory condition, which is contributed by heme-activated proinflammatory macrophages. Although previous studies addressed heme ability to stimulate macrophage inflammatory skewing through Toll-like receptor4 (TLR4)/reactive oxygen species signaling, how heme alters cell functional properties remains unexplored. Macrophage-mediated immune cell recruitment and apoptotic cell (AC) clearance are relevant in the context of SCD, in which tissue damage, cell apoptosis, and inflammation occur owing to vaso-occlusive episodes, hypoxia, and ischemic injury. Here we show that heme strongly alters macrophage functional response to AC damage by exacerbating immune cell recruitment and impairing cell efferocytic capacity. In SCD, heme-driven excessive leukocyte influx and defective efferocytosis contribute to exacerbated tissue damage and sustained inflammation. Mechanistically, these events depend on heme-mediated activation of TLR4 signaling and suppression of the transcription factor proliferator-activated receptor γ (PPARγ) and its coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). These changes reduce efferocytic receptor expression and promote mitochondrial remodeling, resulting in a coordinated functional and metabolic reprogramming of macrophages. Overall, this results in limited AC engulfment, impaired metabolic shift to mitochondrial fatty acid ß-oxidation, and, ultimately, reduced secretion of the antiinflammatory cytokines interleukin-4 (IL-4) and IL-10, with consequent inhibition of continual efferocytosis, resolution of inflammation, and tissue repair. We further demonstrate that impaired phagocytic capacity is recapitulated by macrophage exposure to plasma of patients with SCD and improved by hemopexin-mediated heme scavenging, PPARγ agonists, or IL-4 exposure through functional and metabolic macrophage rewiring. Our data indicate that therapeutic improvement of heme-altered macrophage functional properties via heme scavenging or PGC1α/PPARγ modulation significantly ameliorates tissue damage associated with SCD pathophysiology.


Assuntos
Anemia Falciforme , Heme , Humanos , Heme/metabolismo , Interleucina-4/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , PPAR gama , Receptor 4 Toll-Like/metabolismo , Macrófagos/metabolismo , Anemia Falciforme/metabolismo , Inflamação/metabolismo
18.
Pain ; 164(8): 1874-1886, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897169

RESUMO

ABSTRACT: Debilitating pain affects the lives of patients with sickle cell disease (SCD). Current pain treatment for patients with SCD fail to completely resolve acute or chronic SCD pain. Previous research indicates that the cation channel transient receptor potential vanilloid type 4 (TRPV4) mediates peripheral hypersensitivity in various inflammatory and neuropathic pain conditions that may share similar pathophysiology with SCD, but this channel's role in chronic SCD pain remains unknown. Thus, the current experiments examined whether TRPV4 regulates hyperalgesia in transgenic mouse models of SCD. Acute blockade of TRPV4 alleviated evoked behavioral hypersensitivity to punctate, but not dynamic, mechanical stimuli in mice with SCD. TRPV4 blockade also reduced the mechanical sensitivity of small, but not large, dorsal root ganglia neurons from mice with SCD. Furthermore, keratinocytes from mice with SCD showed sensitized TRPV4-dependent calcium responses. These results shed new light on the role of TRPV4 in SCD chronic pain and are the first to suggest a role for epidermal keratinocytes in the heightened sensitivity observed in SCD.


Assuntos
Anemia Falciforme , Antineoplásicos , Dor Crônica , Animais , Camundongos , Anemia Falciforme/complicações , Anemia Falciforme/metabolismo , Antineoplásicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Camundongos Transgênicos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
19.
BMC Biol ; 21(1): 31, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782158

RESUMO

BACKGROUND: Intracellular hemoglobin polymerization has been supposed to be the major determinant for the elevated rigidity/stiffness of sickle erythrocytes from sickle cell anemia (SCA) patients. However, the contribution of the cell envelope remains unclear. RESULTS: In this study, using atomic force microscopy (AFM), we compared the normal and sickled erythrocyte surfaces for stiffness and topography. AFM detected that sickle cells had a rougher surface and were stiffer than normal erythrocytes and that sickle cell ghosts had a rougher surface (for both outer and inner surfaces) and were thicker than normal ghosts, the latter implying a higher membrane-associated hemoglobin content/layer in the sickle cell envelope. Compared to healthy subjects, the SCA patients had lower plasma lipoprotein levels. AFM further revealed that a mild concentration of methyl-ß-cyclodextrin (MßCD, a putative cholesterol-depleting reagent) could induce an increase in roughness of erythrocytes/ghosts and a decrease in thickness of ghosts for both normal and sickle cells, implying that MßCD can alter the cell envelope from outside (cholesterol in the plasma membrane) to inside (membrane-associated hemoglobin). More importantly, MßCD also caused a more significant decrease in stiffness of sickle cells than that of normal erythrocytes. CONCLUSIONS: The data reveal that besides the cytosolic hemoglobin fibers, the cell envelope containing the membrane-associated hemoglobin also is involved in the biomechanical properties (e.g., stiffness and shape maintenance) of sickle erythrocytes.


Assuntos
Anemia Falciforme , Eritrócitos , Humanos , Microscopia de Força Atômica , Anemia Falciforme/etiologia , Anemia Falciforme/metabolismo , Membrana Eritrocítica/metabolismo , Hemoglobinas/metabolismo
20.
Curr Opin Hematol ; 30(3): 86-92, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853830

RESUMO

PURPOSE OF REVIEW: This review provides an update on the pathophysiology of sickle cell disease (SCD) with a particular focus on the dysregulation of the von Willebrand factor (VWF) - ADAMTS13 axis that contributes to its pathogenesis. In discussing recent developments, we hope to encourage new and ongoing discussions surrounding therapeutic targets for SCD. RECENT FINDINGS: Within the last 5 years, the role of VWF in the pathophysiology of SCD has been further elucidated and is now a target of study in ongoing clinical trials. SUMMARY: The pathophysiology of SCD is multifaceted, as it involves systemwide vascular activation, altered blood rheology, and the activation of immune responses and coagulative pathways. The presence of VWF in excess in SCD, particularly in its largest multimeric form, greatly contributes to its pathogenesis. Understanding the molecular mechanisms that underly the presence of large VWF multimers in SCD will provide further insight into the pathogenesis of SCD and provide specific targets for therapy.


Assuntos
Anemia Falciforme , Trombose , Humanos , Fator de von Willebrand , Tromboinflamação , Inflamação , Trombose/etiologia , Anemia Falciforme/metabolismo , Proteína ADAMTS13/genética , Proteína ADAMTS13/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...